National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Microdomains in freshwater sediment as a driving factor in the biogeochemical processes
Duchoslav, Vojtěch ; Falteisek, Lukáš (advisor) ; Beranová, Jana (referee)
A natural arsenic anomaly at Mokrsko is a site of biogenic precipitation of realgar (As4S4) in stream sediment. The extent of the phenomenon in Mokrsko is globally unique. A previous study showed the ability of microorganisms to solubilize arsenic from its secondary minerals and to produce realgar precursors, i.e. sulfides and arsenites, by anaerobic respiration. The study also raised questions about the mechanism of realgar precipitation since physicochemical conditions favoring this reaction were never detected despite significant sampling efforts. We chemically and microbiologically analyzed sedimentary profiles to the depth of ca. 120 cm in order to understand the functioning of the biogeochemical system. The profiles comprised both the unsaturated and the saturated zone. We distinguished six different domains representing environments from the surface soil to anoxic sedimnent containing realgar-encrusted wood. An analysis of phylogenetic dissimilarity revealed that microbial communities from the various domains form distinct clusters. This suggests that different conditions prevail in the various domains, and that different biogeochemical processes take place there. Incubation (microcosm) experiments showed that bioprecipitation of realgar can be conducted in vitro. It requires a suppression...
Microdomains in freshwater sediment as a driving factor in the biogeochemical processes
Duchoslav, Vojtěch ; Falteisek, Lukáš (advisor) ; Beranová, Jana (referee)
A natural arsenic anomaly at Mokrsko is a site of biogenic precipitation of realgar (As4S4) in stream sediment. The extent of the phenomenon in Mokrsko is globally unique. A previous study showed the ability of microorganisms to solubilize arsenic from its secondary minerals and to produce realgar precursors, i.e. sulfides and arsenites, by anaerobic respiration. The study also raised questions about the mechanism of realgar precipitation since physicochemical conditions favoring this reaction were never detected despite significant sampling efforts. We chemically and microbiologically analyzed sedimentary profiles to the depth of ca. 120 cm in order to understand the functioning of the biogeochemical system. The profiles comprised both the unsaturated and the saturated zone. We distinguished six different domains representing environments from the surface soil to anoxic sedimnent containing realgar-encrusted wood. An analysis of phylogenetic dissimilarity revealed that microbial communities from the various domains form distinct clusters. This suggests that different conditions prevail in the various domains, and that different biogeochemical processes take place there. Incubation (microcosm) experiments showed that bioprecipitation of realgar can be conducted in vitro. It requires a suppression...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.